

Lectures 6-10

Newton's laws of Motion

In 1687, Isaac Newton laid down three fundamental laws of motion, which are:
$1^{\text {st }}$ Law
The Law of Inertia

The Law of acceleration
$3^{\text {rd }}$ Law
The Law of action \& reaction

Every body continues in its state of rest, or of uniform motion in a straight line, unless it is forced to change that state by forces impressed upon it.

The change of motion is proportional to the net force impressed and is made in the direction of that force.

To every action there is always an equal reaction.

Newton's laws of Motion

Newton's first law of motion....

Newton's second law of motion....

Newton's third law of motion....

Force of A on B is equal and opposite to the force of B on A.

What is Inertia?

Inertial Frames of Reference

Newton's $1^{\text {st }}$ law

The first law describes a common property of matter, known as inertia.

It is the resistance of a matter to change its state of motion.
This means that; in the absence of applied forces, matter simply continues in its current velocity state-forever.
-A mathematical description of the motion of a particle requires the selection of a frame of reference, or a set of coordinates according to which the position, velocity, and acceleration of the particle can be specified.

- Uniformly moving frames of reference (i.e. those considered at 'rest' or moving with constant velocity in a straight line) are called inertial frames of reference.
- If we can neglect the effect of the earth's rotations, a frame of reference fixed in the earth is an inertial reference frame.
- Newton's laws are only applicable at inertial reference frames.

Newton's Second and Third Laws

\square The physical quantity that measures inertia is called mass.
\square The more massive an object is, the more resistive it is to acceleration Suppose we have two masses $\mathrm{m}_{1}, \mathrm{~m}_{2}$ on a frictionless surface. Now imagine someone pushing the two masses together, and then suddenly releasing them so that they fly apart, achieving speeds v_{1} and v_{2}. The ratio of the two masses can be expressed as;

$$
\frac{m_{2}}{m_{1}}=\left|\frac{\mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{2}}}\right|
$$

Or;

$$
\Delta\left(m_{1} \mathbf{v}_{1}\right)=-\Delta\left(m_{2} \mathbf{v}_{2}\right)
$$

The (-) appears because the final velocities v_{1} and v_{2} are in opposite directions. If we divide by

(a)
 $\Delta \mathrm{t}$ and take limits as $\Delta \mathrm{t} \sim 0$, we obtain

$$
\begin{equation*}
\frac{d}{d t}\left(m_{1} \mathbf{v}_{1}\right)=-\frac{d}{d t}\left(m_{2} \mathbf{v}_{2}\right) \tag{1}
\end{equation*}
$$

According to Newton's $2^{\text {nd }}$ law, this "change of motion" is proportional to the force caused it;

$$
\mathbf{F} \propto \frac{d}{d t}(m \mathbf{v})
$$

Defining the unit in the SI system, Newton's $2^{\text {nd }}$ law can be expressed in the familiar form:

$$
\mathbf{F}_{\mathrm{net}}=\frac{d}{d t}(m \mathbf{v})=m \mathbf{a}
$$

Hence, equation (1) is equivalent to

$$
\boldsymbol{F}_{1}=-\boldsymbol{F}_{2}
$$

Which is Newton's $3^{\text {rd }}$ law, that states; two interacting bodies exert equal and opposite forces upon one another.

Linear Momentum

The product of mass and velocity, mv, is called linear momentum, \boldsymbol{P}, hence, the $2^{\text {nd }}$ law can be rewritten as;

$$
\mathbf{F}=\frac{d \mathbf{p}}{d t}
$$

which means that;
The time rate of change of an object's linear momentum is proportional to the applied force, \mathbf{F}.

Similarly,

$$
\boldsymbol{F}_{1}=-\boldsymbol{F}_{2}
$$

is equivalent to

Newton's $3^{\text {rd }}$ Law

$$
\frac{d}{d t}\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right)=0
$$

Or;

$$
\left(p_{1}+p_{2}\right)=\text { cons } .
$$

In other words, Newton's $3^{\text {rd }}$ law implies that the total momentum of two mutually interacting bodies is a constant.

Rectilinear Motion

Motion with

 Constant ForceWhen a moving particle remains on a single straight line, the motion is said to be rectilinear. In this case, we can choose the \boldsymbol{x} axis as the line of motion. The general equation of motion is then

$$
F(x, \dot{x}, t)=m \ddot{x}
$$

The simplest case is when F is constant. In this case a is constant ;

$$
\ddot{x}=\frac{F}{m}=\mathbf{c o n s t a n t}=a
$$

Integrating with respect to time:

$$
\begin{equation*}
\dot{x}=v=a t+v_{0} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x=\frac{1}{2} a t^{2}+v_{0} t+x_{0} \tag{2}
\end{equation*}
$$

where v_{0} is the velocity and x_{0} is the position at $\mathrm{t}=0$.
From (1) \& (2) we obtain;

$$
\begin{equation*}
2 a\left(x-x_{0}\right)=v^{2}-v_{0}^{2} \tag{3}
\end{equation*}
$$

Forces that Depend on Position

The Concepts of Kinetic \& Potential Energy

If the force is independent of velocity or time, then the differential equation for rectilinear motion is simply

$$
\begin{align*}
F(x) & =m \ddot{x}=m\left(\frac{d x}{d t} \frac{d \dot{x}}{d x}\right)=m v \frac{d v}{d x} \\
& =\frac{1}{2} m \frac{d\left(v^{2}\right)}{d x}=\frac{d T}{d x} \tag{4}
\end{align*}
$$

The quantity $T=\frac{1}{2} m v^{2}$ is called the kinetic energy of the particle. Taking the integral of (4):

$$
W=\int_{x_{0}}^{x} F(x) d x=T-T_{0}
$$

Where W is the work done on the particle by the impressed force $F(x)$. This work is equal to the change in the kinetic energy of the particle.

Examples

Linear
 Momentum

EXAMPLE 2.1.2

A spaceship of mass M is traveling in deep space with velocity $v_{i}=20 \mathrm{~km} / \mathrm{s}$ relative to the Sun. It ejects a rear stage of mass 0.2 M with a relative speed $u=5 \mathrm{~km} / \mathrm{s}$. What then is the velocity of the spaceship?

Since the total linear momentum is conserved, Then

$$
P_{i}=P_{f}
$$

Where,

$$
P_{i}=M v_{i}
$$

Let U be the velocity of the ejected rear stage and v_{f} be the velocity of the ship after ejection. The total momentum of the system after ejection is then

$$
P_{f}=0.2 M U+0.8 M v_{f}
$$

But

$$
U=v_{f}-u
$$

Then $\quad 0.2 M\left(v_{f}-u\right)+0.8 M v_{f}=M v_{i}$
which gives us

$$
v_{f}=v_{i}+0.2 u=20 \mathrm{~km} / \mathrm{s}+0.2(5 \mathrm{~km} / \mathrm{s})=21 \mathrm{~km} / \mathrm{s}
$$

Motion with Constant Force

EXAMPLE 2.2.1

Consider a block that is free to slide down a smooth, frictionless plane that is inclined at an angle θ to the horizontal. If the height of the plane is h and the block is released from rest at the top ($v_{0}=0$), what will be its speed when it reaches the bottom?

We choose a coordinate system whose positive x -axis points down the plane and whose y-axis points "upward," \perp to the plane

The only force along the x direction is the component of gravitational force, $\mathrm{mg} \sin \theta$, and it is constant. Then

Body accelerating down an inclined plane

$$
\ddot{x}=a=\frac{F_{g}}{m}=g \sin \theta
$$

and

$$
x-x_{0}=\frac{h}{\sin \theta}
$$

Using;

$$
2 a\left(x-x_{0}\right)=v^{2}-v_{0}^{2}
$$

we obtain;

$$
v^{2}=2 g \sin \theta\left(\frac{h}{\sin \theta}\right)=2 g h
$$

Motion with

 Constant Force
EXAMPLE 2.2.1

hence,

$$
\begin{aligned}
\ddot{x}=a= & \frac{F_{\text {net }}}{m}=\frac{m g \sin \theta-\mu_{k} m g \cos \theta}{m} \\
& =g\left(\sin \theta-\mu_{k} \cos \theta\right)
\end{aligned}
$$

Body accelerating down an inclined plane
and

$$
x-x_{0}=\frac{h}{\sin \theta}
$$

Using;

$$
2 a\left(x-x_{0}\right)=v^{2}-v_{0}^{2}
$$

we obtain;

$$
v^{2}=2 g\left(\sin \theta-\mu_{k} \cos \theta\right)\left(\frac{h}{\sin \theta}\right)=2 g h\left(1-\frac{\mu_{k}}{\tan \theta}\right)
$$

Forces that Depend on Position

The Concepts of Kinetic \& Potential Energy

If the force is independent of velocity or time, then the differential equation for rectilinear motion is simply

$$
\begin{align*}
F(x) & =m \ddot{x}=m\left(\frac{d x}{d t} \frac{d \dot{x}}{d x}\right)=m v \frac{d v}{d x} \\
& =\frac{1}{2} m \frac{d\left(v^{2}\right)}{d x}=\frac{d T}{d x} \tag{4}
\end{align*}
$$

The quantity $T=\frac{1}{2} m v^{2}$ is called the kinetic energy of the particle. Taking the integral of (4):

$$
W=\int_{x_{0}}^{x} F(x) d x=T-T_{0}
$$

Where W is the work done on the particle by the impressed force $F(x)$. This work is equal to the change in the kinetic energy of the particle.

Let us define another function $V(x)$ such that;

$$
F(x)=-\frac{d V(x)}{d x}
$$

The function $V(x)$ is called the potential energy. Hence;

Or;

$$
\begin{gathered}
W=\int_{x_{0}}^{x} F(x) d x=-\int_{x_{0}}^{x} d V=-V(x)+V\left(x_{0}\right)=T-T_{0} \\
T_{0}+V\left(x_{0}\right)=T+V(x) \equiv E
\end{gathered}
$$

E is known as the total mechanical energy of the particle.

1- The sum of the kinetic and potential energies E is constant throughout the motion of the particle.

2- The force is a function only of the position x. Such a force is said to be conservative.

3- when $\boldsymbol{v = 0} \supset T=0 \supset V(x)=E$. This point known as "the turning point"

Examples

The Concept of Potential Energy

Free Fall

EXAMPLE (2.3.1)

Then

$$
\begin{aligned}
& F=-\frac{d V}{d x}=-m g \\
& V=m g x+C
\end{aligned}
$$

We can choose $C=0$, which means that $V=0$ when $x=0$.
The energy equation is then

$$
\frac{1}{2} m v^{2}+m g x=E
$$

For instance, let the body be projected upward with initial speed v_{0} from the origin $x=0$. These values give;

$$
\frac{1}{2} m v^{2}+m g x=\frac{1}{2} m v_{0}^{2}+0
$$

So;

$$
v^{2}=v_{0}^{2}-2 g x
$$

The turning point of the motion, which is in this case the maximum height, is given by setting $v=0$.
This gives

$$
h=x_{\max }=\frac{v_{0}^{2}}{2 g}
$$

Other Solution

Using;

$$
2 a\left(x-x_{0}\right)=v^{2}-v_{0}^{2}
$$

we obtain;

$$
h=x-x_{0}=\frac{-v_{0}^{2}}{-2 g}=\frac{v_{0}^{2}}{2 g}
$$

Morse Function

EXAMPLE (2.3.3):

The potential energy of a vibrating diatomic molecule as a function of x is given by;

$$
V(x)=V_{0}\left[1-e^{-\left(x-x_{0}\right) / \delta}\right]^{2}-V_{0}
$$

Show that:
1- x_{0} is the separation of the two atoms at equilibrium, i.e.
when the potential energy function is minimum.
2- and that $V\left(x_{0}\right)=-V_{0}$.

Solution

$V(x)$ is min when its derivative (w.r.t) x is zero;

$$
\begin{aligned}
& F(x)=-\frac{d V(x)}{d x}=0 \\
& 2 \frac{V_{0}}{\delta}\left(1-e^{-\left(x-x_{0}\right) / \delta}\right)\left(e^{-\left(x-x_{0}\right) / \delta}\right)=0 \\
& 1-e^{-\left(x-x_{0}\right) / \delta}=0 \\
& \ln (1)=-\left(x-x_{0}\right) / \delta \\
& \therefore \quad x=x_{0} \\
& \\
&
\end{aligned}
$$

Substituting in the main equation, the value of the $\min V(x)$ can be found as;

$$
V\left(x_{0}\right)=-V_{0}
$$

Forces that Depend on Time

The Concept of Impulse

Forces of extremely short duration in time, such as those exerted by bodies undergoing collisions, are called impulsive forces.
If we confine our attention to one body, or particle, the differential equation of motion is

$$
d(m v)=F d t .
$$

Let us take the time integral over the interval t_{1} to t_{2}, the time during which the force is considered to act, then we have

$$
\Delta(m v)=\int_{t_{1}}^{t_{2}} F d t=P
$$

The Impulse

Note:

1- The work is equal to the change in the energy of the particle.

$$
\Delta T=\int_{x_{1}}^{x_{2}} F d x=W
$$

2- The impulse is equal to the change in the momentum of the particle.

$$
\Delta(m v)=\int_{t_{1}}^{t_{2}} F d t=P
$$

Forces that Depend on Velocity

Fluid Resistance and Terminal Velocity

The force acts on a body is often a function of its velocity. For example, the viscous resistance exerted on a body moving through a fluid depends on its velocity. In such case, the differential equation of motion may be written in either of the two forms

$$
\begin{aligned}
& F_{0}+F(v)=m \frac{d v}{d t} \\
& F_{0}+F(v)=m v \frac{d v}{d x}
\end{aligned}
$$

Here F_{0} is any constant force that does not depend on v.
Since, $F(v)$ is a complex function and must be found through experimental measurements, it can be replaced by the following approximation :

$$
\begin{aligned}
& F(v)=-c_{1} v-c_{2} v|v| \\
& F(v)=-v\left(c_{1}+c_{2}|v|\right)
\end{aligned}
$$

where c_{1} and c_{2} are constants whose values depend on the size and shape of the body.

Linear
 or
 Quadratic?

For spheres in air,

$$
c_{1}=1.55 \times 10^{-4} \mathrm{D} \quad \& \quad c_{2}=0.22 \mathrm{D}^{2}
$$

where D is the diameter of the sphere in meters.
For small v the linear term in $F(v)$ can be used, while the quadratic term dominates at large v.

To decide whether the case is linear or quadratic, the ratio of the latter to the former usually used;

$$
\frac{c_{2} v|v|}{c_{1} v}=\frac{0.22 v|v| D^{2}}{1.55 \times 10^{-4} v D}=1.4 \times 10^{3}|v| D
$$

If the value of v will make the ratio exceeds 1 then it is a quadratic case, otherwise, it is a linear one.

Linear Resistance

(Exp.2.4.1)

Horizontal Motion through a Fluid

Suppose a block is projected with initial velocity v_{0} on a smooth horizontal surface and that there is air resistance such that the linear term dominates.
Hence, $\quad F_{0}=0$, and $F(v)=-c_{1} v$.
The differential equation of motion is then; $-c_{1} v=m \frac{d v}{d t}$
By integrating,

$$
t=-\int_{v_{0}}^{v} \frac{m d v}{c_{1} v}=-\frac{m}{c_{1}} \ln \left(\frac{v}{v_{0}}\right)
$$

Solving for v as a function of t gives;

$$
v=v_{0} e^{-c_{1} t / m}
$$

A second integration gives

$$
\begin{aligned}
& x=\int_{0}^{t} v_{0} e^{-c_{1} t / m} d t \\
& x=\frac{m v_{0}}{c_{1}}\left(1-e^{-c_{1} t / m}\right)
\end{aligned}
$$

Showing that after a long time ($t \sim \infty$) the block approaches a limiting position given by;

$$
x_{\lim }=m v_{0} / c_{1}
$$

Horizontal Motion through a Fluid

Quadratic Resistance
(Exp.2.4.2)

The differential equation of motion in this case is;

$$
-c_{2} v^{2}=m \frac{d v}{d t}
$$

Similarly we can get v and the position x as a function of time.

Exercise

Check the Book's results Using Maple

Vertical Fall through a Fluid

1- Linear Case

Terminal Velocity

For an object falling vertically in a resisting fluid, the force F_{0} in this case, is the weight of the object, -mg . For the linear case of fluid resistance, the differential equation of motion is;

$$
-m g-c_{1} v=m \frac{d v}{d t}
$$

Integrating and solving for v, we get

$$
v=-\frac{m g}{c_{1}}+\left(\frac{m g}{c_{1}}+v_{0}\right) e^{-c_{1} t / m}
$$

After a sufficient time ($t \gg m / c_{1}$), the velocity approaches a limiting value $\left(-m g / c_{1}\right)$. This limiting velocity of a falling body is called the terminal velocity $\left(v_{t}\right)$. Hence the terminal speed is;

$$
v_{t}=\frac{m g}{c_{1}}
$$

The value of v_{t} / g is known as the characteristic time of the motion (τ). I.e ,

$$
\tau=\frac{v_{t}}{g}=\frac{m}{c_{1}}
$$

Note:

At the velocity v_{t} the force of resistance is just equal and opposite to the weight of the body so that the net force is zero, and so the acceleration is zero.

2- Quadratic case:

In this case $F(v) \propto v^{2}$ and the differential equation of motion is;

$$
-m g-c_{2} v^{2}=m \frac{d v}{d t}
$$

Similarly, the terminal speed is ;

$$
v_{t}=\sqrt{\frac{m g}{c_{2}}}
$$

And the characteristic time is;

$$
\tau=\frac{v_{t}}{g}=\sqrt{\frac{m}{c_{2} g}}
$$

